skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Turner, Monica_G"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Changing global climate and wildfire regimes are threatening forest resilience (i.e., the ability to recover from disturbance). Yet distinguishing areas of “no” versus “slow” postfire forest recovery is challenging, and consequences of sparse tree regeneration for plant communities and carbon dynamics are uncertain. We studied previously forested areas where tree regeneration remained sparse 34 years after the large, stand‐replacing 1988 Yellowstone fires (Wyoming, USA) to ask the following questions: (1) What are the recovery pathways in areas of sparse and reduced forest recovery and how are they distributed across the landscape? (2) What explains variation in postfire tree regeneration density (total and by species) among sparse recovery pathways? (3) What are the implications of sparse recovery for understory plant communities? (4) How diminished are aboveground carbon stocks in areas of sparse postfire forest recovery? Tree densities and species‐specific age distributions, understory plant communities, and carbon stocks were sampled in 55 plots during summer 2022. We detected three qualitatively distinct sparse recovery pathways (persistent sparse or non‐forest, continuous tree infilling, and recent seedling and sapling establishment). Nearly half of the plots appeared “locked in” as persistently sparse or non‐forest, while the remaining may be on a slow path to forest recovery. Plots with nearby upwind seed sources as well as in situ seed pressure from young postfire trees appear likely to recover to forest. Where trees were sparse or absent, plant communities resembled those found in meadows, capturing compositional changes expected to become more common with continued forest loss. However, forest‐affinity species persisted in mesic locations, indicating mismatches between some plant communities and future forest change. Aboveground carbon stocks were low owing to minimal tree reestablishment. Almost all (96%) carbon was stored in coarse wood, a sharp departure from C storage patterns where forests are recovering. If not offset by future tree regeneration, decomposition of dead biomass will protract postfire aboveground carbon stock recovery. As global disturbance regimes and climate continue to change, determining the drivers of ecosystem reorganization and understanding how such changes will cascade to influence ecosystem structure and function will be increasingly important. 
    more » « less
  2. Abstract Severe, stand‐replacing wildfire substantially depletes nitrogen (N) stocks in subalpine conifer forests, potentially exacerbating N limitation of net primary productivity in many forested regions where fire frequency is increasing. In lodgepole pine (Pinus contortavar.latifolia) forests in the Greater Yellowstone Ecosystem (GYE), long‐term data show surface soil and biomass N stocks are replenished during the first few decades following wildfire, but the source(s) of that N are unclear. We measured acetylene reduction rates in multiple cryptic niches (i.e., lichen, moss, pine litter, dead wood, and mineral soil) in 34‐year‐old lodgepole pine stands in the GYE to explore the rates, temporal patterns, and climate controls on cryptic N fixation. Acetylene reduction rates were highest in late May (0.376 nmol C2H4g−1 h−1) when moisture availability was high compared with early August and mid‐October when moisture was relatively low (0.112 and 0.002 nmol C2H4g−1 h−1, respectively). We observed modest rates of nitrogenase activity in a few niches following a mid‐summer rain event, suggesting that moisture is an important factor regulating field‐based N fixation rates. In a laboratory experiment, moss responded more strongly to temperature and moisture variation than all other niches. Acetylene reduction rates in dead wood increased with temperature but not moisture content. No other niches showed clear responses to either moisture or temperature manipulation. Together, the field and laboratory results suggest that frequent asynchrony between favorable temperature and moisture conditions may limit N fixation rates in the field. Overall, total annual cryptic N fixation inputs (mean: 0.26; range: 0.07–2.9 kg N ha−1year−1) represented <10% of the postfire biomass and surface soil N accumulation in the same stands (39.4 kg N ha−1year−1), pointing to a still unknown source of ecosystem N following fire. 
    more » « less